A Simple Proof of Dvoretzky-Type Theorem for Hausdorff Dimension in Doubling Spaces

نویسندگان

چکیده

The ultrametric skeleton theorem [Mendel, Naor 2013] implies, among other things, the following nonlinear Dvoretzky-type for Hausdorff dimension: For any $0<\beta<\alpha$, compact metric space $X$ of dimension $\alpha$ contains a subset which is biLipschitz equivalent to an and has at least $\beta$. In this note we present simple proof in doubling spaces using Bartal's Ramsey decompositions [Bartal 2021]. same general approach also used answer question Zindulka [Zindulka 2020] about existence "nearly ultrametric" subsets having full dimension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hausdorff Dimension in Convex Bornological Spaces

For non-metrizable spaces the classical Hausdorff dimension is meaningless. We extend the notion of Hausdorff dimension to arbitrary locally convex linear topological spaces, and thus to a large class of non-metrizable spaces. This involves a limiting procedure using the canonical bornological structure. In the case of normed spaces the new notion of Hausdorff dimension is equivalent to the cla...

متن کامل

Function spaces and Hausdorff dimension on fractals

We start by surveying a possible approach for function spaces of Besov type on special closed subsets of Rn. Afterwards we recall that, in the case of Sobolev spaces and Besov spaces on Rn, the Hausdorff dimension for the graphs of continuous functions belonging to such spaces has been studied by several authors, and that in the case of Besov spaces the final answer concerning the maximal possi...

متن کامل

Randomized Isomorphic Dvoretzky Theorem

Let K be a symmetric convex body in IR for which B 2 is the ellipsoid of minimal volume. We provide estimates for the geometric distance of a “typical” rank n projection of K to B 2 , for 1 ≤ n < N . Known examples show that the resulting estimates are optimal (up to numerical constants) even for the Banach–Mazur distance. Résumé French title here Soit K un corps convexe symétrique de IR dont l...

متن کامل

A Hausdorff-young Theorem for Rearrangement-invariant Spaces

The classical Hausdorff-Young theorem is extended to the setting of rearrangement-invariant spaces. More precisely, if 1 ^ V ̂ 2, p~ + q= 1, and if X is a rearrangement-invariant space on the circle T with indices equal to p~ι9 it is shown that there is a rearrangement-invariant space X on the integers Z with indices equal to ςr such that the Fourier transform is a bounded linear operator from X...

متن کامل

A simple proof of Zariski's Lemma

‎Our aim in this very short note is to show that the proof of the‎ ‎following well-known fundamental lemma of Zariski follows from an‎ ‎argument similar to the proof of the fact that the rational field‎ ‎$mathbb{Q}$ is not a finitely generated $mathbb{Z}$-algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Geometry in Metric Spaces

سال: 2022

ISSN: ['2299-3274']

DOI: https://doi.org/10.1515/agms-2022-0133